On partition functions of Andrews and Stanley
نویسنده
چکیده
G. E. Andrews has established a refinement of the generating function for partitions π according to the numbers O(π) and O(π′) of odd parts in π and the conjugate of π, respectively. In this paper, we derive a refined generating function for partitions into at most M parts less than or equal to N , which is a finite case of Andrew’s refinement.
منابع مشابه
Author manuscript, published in "The Ramanujan Journal (2009) 9 pages" Hook lengths and shifted parts of partitions
— Some conjectures on partition hook lengths, recently stated by the author, have been proved and generalized by Stanley, who also needed a formula by Andrews, Goulden and Jackson on symmetric functions to complete his derivation. Another identity on symmetric functions can be used instead. The purpose of this note is to prove it.
متن کاملA Combinatorial proof of a partition identity of Andrews and Stanley
In his paper, “On a Partition Function of Richard Stanley,” George Andrews proves a certain partition identity analytically and asks for a combinatorial proof. This paper provides the requested combinatorial proof.
متن کاملOn the Andrews-stanley Refinement of Ramanujan’s Partition Congruence modulo 5 and Generalizations
In a recent study of sign-balanced, labelled posets, Stanley introduced a new integral partition statistic srank(π) = O(π)−O(π′), where O(π) denotes the number of odd parts of the partition π and π′ is the conjugate of π. In a forthcoming paper, Andrews proved the following refinement of Ramanujan’s partition congruence mod 5: p0(5n+ 4) ≡ p2(5n+ 4) ≡ 0 (mod 5), p(n) = p0(n) + p2(n), where pi(n)...
متن کاملThe Partition Function of Andrews and Stanley and Al-Salam-Chihara Polynomials
For any partition λ let ω(λ) denote the four parameter weight ω(λ) = a P
متن کاملOn a Partition Function of Richard Stanley
In this paper, we examine partitions π classified according to the number r(π) of odd parts in π and s(π) the number of odd parts in π′, the conjugate of π. The generating function for such partitions is obtained when the parts of π are all 5 N . From this a variety of corollaries follow including a Ramanujan type congruence for Stanley’s partition function t(n).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 107 شماره
صفحات -
تاریخ انتشار 2004